Ethernet/RS232/USB Econo Series, 1-8 axes DMC-41x3 Series

DMC-41x3 motion controller. Available as card-level or box-level in 1-through 8-axis versions.

Product Description

The DMC-41x3 motion controller is Galil's latest generation Econo motor controller. Compared with the DMC-21x3 Econo controller, the DMC-41×3 offers the following enhancements: 100BASE-T Ethernet, aux RS232 port, USB port, uncommitted analog inputs, accepts 15 MHz encoder frequencies, more program memory, and faster sample frequencies. The DMC-41×3 also accommodates the same stepper and servo motor drives used in the DMC-40×0 Accelera series and allows two 4 -axis 500 W drives to be installed in the 8 -axis controller package.

The DMC-41x3 is available as a box-level or card-level motion

Features

- Packaged or card-level controller in 1 through 8 axis versions: DMC-41x3 where $x=1,2,3,4,5,6,7,8$ axes
(1) 10/100BASE-T Ethernet port with Auto MDIX
(1) USB port-main
(1) RS232 port up-aux
- User-configurable for stepper or servo motors on any combination of axes. Optional firmware for piezo-ceramic motors. Configurable for sinusoidal commutation
- Accepts up to 15 MHz encoder frequencies for servos. Outputs pulses up to 3 MHz for steppers
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, PVT, linear and circular interpolation, electronic gearing and electronic cam. Features elliptical scaling, slow-down around corners, infinite segment feed and feedrate override
- Over 200 English-like commands including conditional statements and event triggers

Non-volatile memory for programs, variables and arrays. Multitasking for concurrent execution of up to eight programs

- Optically isolated home input and forward and reverse end-of-travel limits for every axis
Uncommitted, isolated inputs and isolated outputs
1- through 4-axis models: 8 inputs and 8 outputs
5- through 8-axis models: 16 inputs and 16 outputs
- High speed position latch for each axis and output compare8 uncommitted analog inputs
- Dual encoder inputs for each servo axis
- Accepts single 20-80 VDC input

Available with internal stepper and servo drives. Or, connect to external drives of any power range

Available as card-level or with metal enclosure

- Communication drivers for Windows, Mac OSX, and Linux
- Custom hardware and firmware options available
and outputs. The DMC-41×3 controller and drive unit accepts power from a single $20-80 \mathrm{VDC}$ source.

The DMC-41x3 is available in one through eight axis formats, and each axis is user-configurable for stepper or servo motor operation. Standard programming features include PID compensation with velocity and acceleration feedforward, multitasking for simultaneously running up to eight programs, and $\mathrm{I} / 0$ processing for synchronizing motion with external events. Modes of motion include point-to-point positioning, position tracking, jogging, linear and circular interpolation, contouring, electronic gearing and ECAM. Like all Galil controllers, the DMC-41x3 controllers use Galil's popular, intuitive command language, making them very easy to program. GaliiTools servo design software further simplifies system set-up with"one-button" servo tuning and real-time display of position and velocity information.

Ethernet/RS232/USB Econo Series, 1-8 axes

DMC-41×3 Series

Specifications

System Processor

- RISC-based, clock multiplying processor with DSP functions

Communications Interface

(1) 10/100BASE-T Ethernet port with Auto MDIX
(1) USB port-main
(1) RS232 port-aux

Commands are sent in ASCII. A binary communication mode is also available as a standard feature
Modes of Motion:
\square Point-to-point positioning

- Position Tracking
\square Jogging
- $2 D$ Linear and Circular Interpolation with feedrate override

Linear Interpolation for up to 8 axes
\square Tangential Following
Helical
Electronic Gearing with multiple masters and ramp-to-gearing

- Gantry Mode
- Electronic Cam
- Contouring
- PVT (Position-Velocity-Time)
\square Teach and playback
Memory
- Program memory size - 4000 lines $\times 80$ characters
- 510 variables
- 24,000 total array elements in up to 30 arrays

Filter

- PID with velocity and acceleration feedforward
- Notch filter and low-pass filter
- Dual-loop control for backlash compensation
- Velocity smoothing to minimize jerk
- Integration limit
\square Torque limit
\square Offset adjustment

Kinematic Ranges

- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity:Up to 15 million counts/sec for servo motors

Acceleration:Up to 1 billion counts $/ \mathrm{sec}^{2}$

Uncommitted I/0

	ISOLATED INPUTS	ISOLATED OUTPUTS	ANALOG INPUTS
DMC-4113 thru-4143	8	8	8
DMC-4153 thru-4183	16	16	8

High Speed Position Latch

Uncommitted inputs 1-4 latch A, B, C, D and $9-12$ latch E, F, F, G, H axes (latches within 40 microseconds with optoisolation)

Dedicated Inputs (per axis)

- Main encoder inputs - Channel $\mathrm{A}, \mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{I}, \mathrm{I}-(\pm 12 \mathrm{~V}$ or TTL $)$

Dual encoder (for axes configured as servo) - Channel $A, A-B, B-$

- Forward and reverse limit inputs-optoisolated
- Home input—optoisolated

Selectable high-speed position latch input—optoisolated
Selectable abort input for each axis-optoisolated

Dedicated Outputs (per axis)

- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors

PWM output also available for servo amplifiers

- Amplifier enable output
- Error output (one per controller)
- High-speed position compare output (per set of 4 axes)

Minimum Servo Loop Update Time
STANDARD -FAST*
$1-2$ axes: $125 \mu \mathrm{sec} \quad 62 \mu \mathrm{sec}$
3-4 axes: $250 \mu \mathrm{sec} \quad 125 \mu \mathrm{sec}$5-6 axes: $375 \mu \mathrm{sec} \quad 188 \mu \mathrm{sec}$
$7-8$ axes: $500 \mu \mathrm{sec} \quad 250 \mu \mathrm{sec}$

Maximum Encoder Feedback Rate
 15 MHz

Maximum Stepper Rate

3 MHz (Full, half or microstep)

Power Requirements

20-80 VDC

Environmental

- Operating temperature: $0-70^{\circ} \mathrm{C}$

Humidity: 20-95\% RH, non-condensing

Mechanical

- 1-thru 4-axis: $8.1^{\prime \prime} \times 7.25^{\prime \prime} \times 1.5^{\prime \prime}$

5-thru 8 -axis: $11.5^{\prime \prime} \times 7.25^{\prime \prime} \times 1.5^{\prime \prime}$

Connectors

- General I/0:44-pin HD Female D-sub

Axes: 26-pin HD Female D-sub
Analog: 15-pin LD Male D-sub

[^0]
Instruction Set

Etherne		System Configuration	
DH	DHCP Configuration	BN Bu	Burn parameters
HS	Handle switch	BP Bu	Burn program
IA	Set IP address		Brush motor enable
IH	Open IP handle	BV Bu	Burn variables and arrays
1 K	Ethernet port blocking	BW Bra	Brake wait
MB	Modbus	CC Con	Configure communications port
MW	Modbus wait	CE	Configure encoder type
SA	Send command	CF	Configuration unsolicited messages handle
SM	Subnet mask	Cl	Configure communication interrupt
Servo Motor			Configure switches
AF	Analog feedback	CW D	Data adjustment bit
AG	Set amplifier gain	DE De	Define dual encoder position
AU	Set current loop gain	DP D	Define position
AW	Report AMP-43040 bandwidth	DR D	Data record update rate
DV	Dual loop operation	El Ev	Event interrupts
FA	Acceleration feedforward	EO Ector	Echo
FV	Velocity feedforward		Idependent smoothing
1 L	Integrator limit		Program protect (Lock)
KD	Derivative constant	LZ Le	Leading zeros format
KI	Integrator constant	MO M	Motor off
KP	Proportional constant	MT M	Motor type
NB	Notch bandwidth	PF Po	Position format
NF	Notch frequency	PW Pas	Password
NZ	Notch zero	QD Do	Download array
OF	Offset	QU UP	Upload array
PL	Pole	RS Rest	Reset
SH	Servo here		Master reset
TK	Peak torque		Masterreset
TL	Torque limit		Vserinterupt
TM	Sample time		Variable format
Stepper Motor		Math Functions	
KS	Stepper motor smoothing	@ABS[x]	Absolute value of x
LC	Low current	@ACOS[x]	Arc cosine of x
QS	Error magnitude	@ASIN[x]	Arcsine of x
YA	Step drive resolution	@ATAN[$[\mathrm{x}]$	Arctangent of x
YB	Step motor resolution	@COM[x]	1's complement of x
YC	Encoder resolution	$@ \cos [x]$	Cosine of x
YR	Error correction	@FRAC[x]	Fraction portion of x
YS	Stepper position maintenance	@ $\left.\mathrm{NTT}^{\text {[}} \mathrm{x}\right]$	Integer portion of x
Internal Sine Commutation		@RND[x]	Round of x
BA	Brushless axis	@SIN[x]	Sine of x
BB	Brushless phase	@SOR[x]	Square root of x
${ }^{\text {BC }}$	Brushless calibration	@TAN[x]	Tangent
BD	Brushless degrees		Modulus operator
BI	Brushless inputs	Interrog	gation
BM	Brushless modulo	ID A	AMP ID
B0	Brushless offset	LA Lis	List arrays
BS	Brushless setup	LL Li	List labels
BX	Sine Amp Initialization	LS Lis	List program
BZ	Brushless zero	LV Lis	List variables
1/0		MG M	Message command
AL	Arm latch	QH Quty	Query hall state
AQ	Analog configuration	QR Da	Data record
CB	Clear bit	QU Up	Upload array
CO	Configure $/$ / points	QZ Re	Return data record information
II	Input interrupt	RL Re	Report latch
OB	Define output bit	RP Re	Report command position
$0 C$	Output compare function		Firmware revision information
OP	Output port	SC Stor	Stop code
SB	Set bit	TA Tels	Tell amplifier status
@AN[x]	Value of analog inputx	TB Tels	Tell status
@ $\left.{ }^{\text {N }} \mathrm{x}\right]$	State of digital inputx	TC Tel	Tell error code
@OUT[x]	State of digital output x	TD Teld	Tell dual encoder

Interrogation (cont.)	
TE	Tell error
TH	Tell handle
TI	Tell input
TP	Tell position
TR	Trace program
TS	Tell switches
TT	Tell torque
TV	Tell velocity
TZ	Tell I/0 configuration
WH	Which handle
Programming	
BK	Breakpoint
DA	Deallocate variables/arrays
DL	Download program
DM	Dimension arrays
ED	Edit program
ELSE	Conditional statement
ENDIF	End of cond. statement
EN	End program
HX	Halt execution
IF	If statement
IN	Input variable
JP	Jump
JS	Jump to subroutine
NO	No-operation-for comments
RA	Record array
RC	Record interval
RD	Record data
RE	Return from error routine
REM	Remark program
RI	Return from interrupt routine
SL	Single step
UL	Upload program
XQ	Execute program
ZA	Data record variables
ZS	Zero stack
,	Comment
Error Control	
BL	Backward software limit
ER	Error limit
FL	Forward software limit
LD	Limit disable
OA	Encoder failure
OE	Off-on-error function
OT	Encoder failure period
OV	Encoder failure voltage
TW	Timeout for in-position
Trippoint	
AD	After distance
Al	After input
AM	After motion profiler
AP	After absolute position
AR	After relative distance
AS	At speed
AT	After time
AV	After vector distance
MC	Motion complete
MF	After motion-forward
MR	After motion-reverse
WT	Wait for time

Independent Motion	
AB	Abort motion
AC	Acceleration
BG	Begin motion
DC	Deceleration
FE	Find edge
FI	Find index
HM	Home
HV	Home speed
IP	Increment position
IT	Smoothing time constant
JG	Jog mode
PA	Position absolute
PR	Position relative
PT	Position tracking
SD	Switch deceleration
SP	Speed
ST	Stop
Contour Mode	
CD	Contour data
CM	Contour mode
DT	Contour time interval

PVT Mode

PV Position, velocity, time
BT Coordinate start

ECAM/Gearing

EA ECAM master

EB Enable ECAM
EC ECAM table index
EG ECAM go
EM ECAM modulus
EP ECAM interval
EQ Disengage ECAM
ET ECAM table entry
EW ECAM widen
EY ECAM cycle counter
GA Master axis for gearing
GD Engagement distance for gearing
GM Gantry mode
_GP Correction for gearing
GR Gear ratio for gearing

Vector/Linear Interpolation

CA Define vector plane
CR Circular interpolation move
CS Clear motion sequence
ES Elliptical scaling
IT Smoothing time constant
LE Linear interpolation end
LI Linear interpolation segment
LM Linear interpolation mode Stop motion
Tangent
Vector acceleration
Vector deceleration
Vector sequence end
Coordinated motion mode
Vector position
Vector speed ratio
Vector speed
Vector Velocity

DMC-41×3 Series

Connectors-I/O

Connectors Communications

RS232 Auxiliary Port
9 -pin; Female connector and cable
1 NC
2 Receive data-input
3 Transmit data-output
4 NC
5 Ground
6 NC
7 Request to send-output
8 Clear to send-input 95 V

Ethernet 10/100Base-T RJ-45 connector

USB Connector

Connectors-
Amplifier Board
AMP-43040
J2 Power**
6-pin
1 Ground
2 Ground
3 Ground
$4+\mathrm{VM}(20 \mathrm{~V}-80 \mathrm{~V})$
$5+\mathrm{VM}(20 \mathrm{~V}-80 \mathrm{~V})$
$6+V M(20 \mathrm{~V}-80 \mathrm{~V})$
JA1, JB1, JC1, JD1
Motor Output
4-pin
1 Motor Phase C
2 Motor Phase B
3 NC
4 Motor Phase A

J2 General I/O Axes A thru D 44-pin Hi-density Female D-sub
1 Error output* ${ }^{*}$
2 Input 1-isolated
3 Input 4-isolated
4 Input 7-isolated
5 Electronic Lockout-isolated input*
6 Limit switch common
7 Home A-isolated
8 Home B-isolated
9 Home C-isolated
10 Home D-isolated
11 Output power ${ }^{t}$
12 Output 3-isolated
13 Output 6-isolated
14 Output return-
$15+5 \mathrm{~V}$
16 Reset-isolated*
17 Input common
18 Input 3-isolated
19 Input 6-isolated
20 Abort-isolated*
21 NC
22 Reverse limit A-isolated ${ }^{\dagger}$
23 Reverse limit B-isolated ${ }^{\dagger}$
24 Reverse limit C-isolated ${ }^{\dagger}$
25 Reverse limit D-isolated t
26 NC
27 Output 2-isolated
28 Output 5-isolated
29 Output 8-isolated
$30+5 \mathrm{~V}$
31 Ground
32 Input 2-isolated
33 Input 5-isolated
34 Input 8-isolated
35 Ground
36 Forward limit A-isolated t
37 Forward limit B-isolated ${ }^{\dagger}$
38 Forward limit C-isolated ${ }^{t}$
39 Forward limit D-isolated ${ }^{\dagger}$
40 Ground
41 Output 1-isolated
42 Output 4-isolated
43 Output 7-isolated
44 Output Compare A-D

J2 General I/O Axes E thru H
 44-pin Hi-density Female D-sub

1 Error output* ${ }^{*}$
2 Input 9-isolated
3 Input 12-isolated
4 Input 15-isolated
5 Electronic lockout-isolated input*
6 Limit switch common
7 Home E-isolated
8 Home F-isolated
9 Home G-isolated
10 Home H-isolated
11 Output power ${ }^{t}$
12 Output 11-isolated
13 Output 14-isolated
14 Output return-
$15+5 \mathrm{~V}$
16 Reset-isolated*
17 Input common
18 Input 11-isolated
19 Input 14-isolated
20 Abort-isolated*
21 NC
22 Reverse limit E-solated ${ }^{\dagger}$
23 Reverse limit F -isolated ${ }^{\dagger}$
24 Reverse limit G-isolated ${ }^{\dagger}$
25 Reverse limit H -isolated ${ }^{\dagger}$
26 NC
27 Output 10-isolated
28 Output 13-isolated
29 Output 16-isolated
$30+5 \mathrm{~V}$
31 Ground
32 Input 10-isolated
33 Input 13-isolated
34 Input 16-isolated
35 Ground
36 Forward limit E-isolated ${ }^{t}$
37 Forward limit F-isolated t
38 Forward limit G-isolated t
39 Forward limit H -isolated ${ }^{\dagger}$
40 Ground
41 Output 9-isolated
42 Output 12-isolated
43 Output 15-isolated
44 Output Compare E-H
**Note: Power can be input through either of the amplifier connectors to power the entire unit due to power pass-thru connectors that connect input power to all modules. For 5 - through 8 -axis units with two different types of amplifiers, the lower of the maximum voltages is the maximum rating for the unit. However, if you need different voltages, you can specify the ISAMP and/or ISCNTL option to separate the various power inputs.

When using the AMP-43140 with a power supply lower than +20 Volts, a separate supply of $20-80$ VDC must be input to the 2-pin connector on the side of the DMC-41×3.

J3 Analog Inputs

15-pin Low-density Male D-sub

1 Analog Ground
2 Analog input 1
3 Analog input 3
4 Analog input 5
5 Analog input 7
6 Analog Ground
7 -12V
$8+5 \mathrm{~V}$
9 Analog Ground
10 Analog input 2
11 Analog input 4
12 Analog input 6
13 Analog input 8
14 NC
$15+12 \mathrm{~V}$

Axis Connectors Axes A thru H

26-pin Hi-density Female D-sub
1 Hall 2
2 Amp Enable
3 Direction
4 Home-isolated
5 Limit switch common
6 Aux A-
7 Index+
8 A-
$9+5 \mathrm{~V}$
10 Ground
11 Amp Enable Return
12 Hall 1
13 Step
14 Forward limit-isolated t
15 Aux B+
16 Index-
17 B+
18 Ground
19 Motor command
20 Amp Enable Power
21 Hallo
22 Reverse limit-isolated ${ }^{t}$
23 Aux B-
24 Aux A+
25 B-
26 A+
*Active low
${ }^{\dagger}$ Programmable for Active high or Active low

Ethernet/RS232/USB Econo Series, 1-8 axes

DMC-41×3 Series

DMC-41x3 Servo Drive Options

AMP-430x0 2- and 4-axis 500 W Servo Drives (-D3020, -D3040) The AMP-43040 contains four transconductance, PWM amplifiers for driving brushless/brush servo motors. Operating at up to 7 Amps cont., 10 Amps peak, $20-80 \mathrm{VDC}$. The gain settings of the amplifier are user-programmable at $0.4,0.7$ and $1 \mathrm{Amp} /$ Volt. The switching frequency is 60 kHz . The drive for each axis is software configurable to operate in either a chopper or inverter mode. The chopper mode is intended for operating low inductance motors. The amplifier offers protection for over-voltage, undervoltage, over-current, short-circuit and over-temperature. Hall sensors are required for brushless motors. A shunt regulator option is available. A twoaxis version, the AMP-43020 is also available.

AMP-43140 4-axis 20 W Servo Drives (-D3140)

The AMP-43140 contains four linear drives for operating small, brush-type servo motors. The AMP-43140 requires a ± 12-30 VDC input. Output power is 20 W per amplifier or 60 W total. The gain of each transconductance linear amplifier is $0.1 \mathrm{~A} / \mathrm{V}$ at 1 A maximum current. The typical current loop bandwidth is 4 kHz . An SSR option is available which guarantees absolutely no current during motor off.

AMP-43240 4-axis 750 W Servo Drives (-D3240)

The AMP-4324 contains four transconductance, PWM amplifiers for driving brushless/brush servo motors servo motors. Operating at up to 10 Amps cont., 20 Amps peak, $20-80 \mathrm{VDC}$. The gain settings of the amplifier are user-programmable at $0.5,1$ and $2 \mathrm{Amp} /$ Volt. The switching frequency
is 24 KHz . The drive operates in chopper mode. The amplifier offers protection for over-voltage, under-voltage, over-current, short-circuit and overtemperature. Hall sensors are required for brushless motors. A shunt regulator option is available.

AMP-435x0 2- and 4-axis 600 W Servo Drives with Sinusoidal Commutation (-D3520,-D3540)

The AMP-43540 contains four transconductance, PWM amplifiers for driving brushless servo motors with sinusoidal commutation. Each amplifier drives motors operating at up to 8 Amps cont., 15 Amps peak, 20-80 VDC. The gain settings of the amplifier are user-programmable at $0.4,0.8$ and 1.6 Amp/Volt. The switching frequency is 33 KHz . The amplifier offers protection for over-voltage, under-voltage, over-current, short-circuit and over-temperature. Hall sensors are not required for brushless motor commutation. A shunt regulator option is available. A two-axis version, the AMP-43520, is also available.

AMP-43640 4-axis 20 W Servo Drives with Sinusoidal Commutation (-D3640)

The AMP-43640 contains four linear, transconductance amplifiers for driving brushless servo motors with sinusoidal commutation. The AMP-43640 requires $15-30 \mathrm{VDC}$, and the gain setting of each amplifier is $0.1 \mathrm{~A} / \mathrm{V}$ at 1 A maximum current. Hall sensors are not required for brushless motor commutation.

The DMC-41x3 can be optionally equipped with a multi-axis internal servo or stepper motor drive that resides inside the DMC-41x3 enclosure. $5-8$ axis versions can mix and match two of the following drives.

Drive Name (Part Number)	AMP-430x0 (-D30x0)	AMP-43140 (-D3140)	AMP-43240 (-D3240)	AMP-435x0 (-D35x0)	AMP-43640 (-D3640)
Motor Type	Brushed/Brushless servo	Brushed servo	Brushed/Brushless servo	Brushless servo-sinusoidal	Brushless servo-sinusoidal
Axes	$4 \mathrm{x}=4,2 \mathrm{x}=2$	4	4	$4 \mathrm{x}=4,2 \mathrm{x}=2$	4
Current Drive	PWM	Linear	PWM	PWM	Linear
Axis power (Watts)	500	20 (60 max for 4 axes)	750	600	20
Cont. Current (Amps)	7	1	10	8	1
Peak Current (Amps)	10	1	20	15	2
Voltage Bus (VDC)	20-80 (160 available)	+/-12-30 bipolar	20-80	20-80	15-30
Gains	0.4, $0.7,1.0 \mathrm{~A} / \mathrm{V}$	0.1 (0.01 available) A/V	0.5, 1, $2 \mathrm{~A} / \mathrm{V}$	0.4, $0.8,1.6 \mathrm{~A}$	$0.2 \mathrm{~A} / \mathrm{V}$
Switching Freq (Khz)	60 (140 available)	N/A	24	33	N/A
Typical Current Loop BW (kHz)*	2-8	4	4	-	4
Drive Modes	Inverter, Chopper	Linear	Chopper	-	Linear
Commutation	Trap w/ 120° Halls	Brushed only	Trap w/ 120° Halls	Sinusoidal	Sinusoidal
Min. Inductance (mH)	0.2-0.5	0.2	0.2	0.5	0.5
Over Voltage	Yes	No	Yes	Yes	No
Under Voltage	Yes	No	Yes	Yes	No
Over Current	Yes	Fused	Yes	Yes	Fused
Short circuit	Yes	Fused	Yes	Yes	Fused
Over temp	Yes	Thermal Shutdown	Yes	Yes	Thermal Shutdown
ELO input	Yes	Yes	Yes	Yes	Yes
Other Notes	Shunt option Adjustable current loop	SSR option, disconnects power at startup	Shunt option Adjustable current loop	Shunt option	SSR option

[^1]
Ethernet/RS232/USB Econo Series, 1-8 axes

DMC-41x3 Series

DMC-41x3 Stepper Drive Options

SDM-440x0 2- and 4-axis Stepper Drives (-D4020,-D4040) The SDM-44040 contains four drives for operating two-phase bipolar step motors. The SDM-44040 requires a single $12-30$ VDC input.The unit is user-configurable for $1.4 \mathrm{~A}, 1.0 \mathrm{~A}, 0.75 \mathrm{~A}$, or 0.5 A per phase and for full-step, half-step, $1 / 4$ step or $1 / 16$ step. A two-axis version, the SDM-44020, is also available.

SDM-44140 4-axis Microstep Drives (-D4140)

The SDM-44140 contains four microstepping drives for operating twophase bipolar stepper motors. The drives produce 64 microsteps per full step or 256 steps per full cycle which results in 12,800 steps/rev for a standard 200 -step motor. The maximum step rate generated by the controller is $3,000,000$ microsteps/second. The SDM-44140 drives motors operating at up to 3 Amps at 12 to 60 VDC (available voltage at motor is 10% less). There are four software-selectable current settings: $0.5 \mathrm{~A}, 1 \mathrm{~A}$, 2 A and 3 A. Plus, a selectable low-current mode reduces the current by 75% when the motor is not in motion. No external heatsink is required.

The DMC-41x3 can be optionally equipped with a multi-axis internal servo or stepper motor drive that resides inside the DMC-41×3 enclosure. $5-8$ axis versions can mix and match two of the following drives.

Drive Name (Part Number)	SDM-440x0 (-D40x0)	SDM-44140 (-D4140)
Motor Type	Stepper	Stepper
Axes	$4 \mathrm{x}=4,2 \mathrm{x}=2$	4
Current Drive	PWM	PWM
Axis power (Watts)	42	180
Cont. Current (Amps)	-	-
Peak Current (Amps)	1.4	3.0
Voltage Bus (VDC)	$12-30$	$12-60$
Gains	$0.5,0.75,1.0,1.4 \mathrm{~A}$	$0.5,1.0,2.0,3.0 \mathrm{~A}$
Switching Freq (Khz)	27 (nominal)	60
Typical Current Loop BW (kHz)*	-	-
Drive Modes	$1,2,4,16$ microstep	64 microstep
Commutation	-	-
Min. Inductance (mH)	0.5	0.5
Over Voltage	No	No
Under Voltage	No	Yes
Over Current	Yes	Yes
Short circuit	Yes	Yes
Over temp	No	Yes
ELO input	Yes	Yes
Other Notes	Low current feature	Low current feature

[^2]
Ethernet/RS232/USB Econo Series, 1-8 axes

DMC-41×3 Series

Ordering Information

1-through 8-axis Models:

Options

DMC Controller

OPT CODE
DESCRIPTION
DIN DIN Rail mounting option
$12 \mathrm{~V} \quad 12 \mathrm{VDC}$ controller power
16BIT
NRExxxx
422
SSI
BiSS
TRES
4-20mA
HSRC

Drive-Axes 5-8 (optional)
3020: two 500 Watt servo motor drives
3040: four 500 Watt servo motor drives
3140: four 20 Watt servo motor drives
3240: four 750 Watt servo motor drives
3520: two 600 Watt servo motor drives - sinusoidal commutation
3540: four 600 Watt servo motor drives - sinusoidal commutation
3640: four 20 Watt servo motor drives - sinusoidal commutation
4020: two 1.4 A stepper motor drives-Full, Half, 1/4, 1/16
4040: four 1.4 A stepper motor drives-Full, Half, 1/4, 1/16
4140: four microstep drives

Drive-Axes 1-4 (optional)

.two 500 Watt servo motor drives

3140:four 20 Wat servo motor dives
3240: four 750 Watt servo motor drives
3520: two 600 Watt servo motor drives - sinusoidal commutation
3540: four 600 Watt servo motor drives - sinusoidal commutation
3640: four 20 Watt servo motor drives - sinusoidal commutation
4020: two 1.4 A stepper motor drives-Full, Half, 1/4, 1/16

4140: four microstep drives

SDM and AMP Drives

OPT CODE DESCRIPTION
$100 \mathrm{~mA} \quad 100 \mathrm{~mA}$ output capacity for AMP-43140. Default is 1 Amp
ISAMP Isolation of power between each AMP amplifier
ISCNTL Isolation of controller power from amplifier power SSR No current during motor off

Note: If a special option is required, place the appropriate OPT CODE inside a parenthesis directly following the respective DMC, CMB, ICM, SDM or AMP part numbers. Use commas for multiple options within a parenthesis.

Ethernet/RS232/USB Econo Series, 1-8 axes

DMC-41x3 Series

Ordering Information - continued

PART NUMBER	DESCRIPTION	QUANTITY 1	QUANTITY 100
DMC-4113	1-axis Ethernet/RS232/USB controller (card-level)	\$1095	\$ 795
DMC-4123	2-axis Ethernet/RS232/USB controller (card-level)	\$1195	\$ 865
DMC-4133	3-axis Ethernet/RS232/USB controller (card-level)	\$1345	\$ 925
DMC-4143	4-axis Ethernet/RS232/USB controller (card-level)	\$1495	\$ 995
DMC-4153	5-axis Ethernet/RS232/USB controller (card-level)	\$1695	\$1145
DMC-4163	6-axis Ethernet/RS232/USB controller (card-level)	\$1795	\$1215
DMC-4173	7-axis Ethernet/RS232/USB controller (card-level)	\$1895	\$1280
DMC-4183	8-axis Ethernet/RS232/USB controller (card-level)	\$1995	\$1345
-BOX	Metal enclosure for 1-4 axis models (required if using AMPs and SDMs)	add \$ 100	add \$ 75
-BOX	Metal enclosure for 5-8 axis models (required if using AMPs and SDMs)	add \$ 125	add \$ 100
AMP-43040 (-D3040)	Four 500 W servo motor drives (use one for 1-4 axis models; Two for 5-8 axes models). Add to above. - BOX version is required for AMPs and SDMs	\$ 700	\$ 400
AMP-43020 (-D3020)	Two 500 W servo motor drives. - BOX version is required for AMPs and SDMs	\$ 450	\$ 275
AMP-43140 (-D3140)	Four 20 W servo motor drives. - BOX version is required for AMPs and SDMs	\$ 175	\$ 155
AMP-43240 (-D3240)	Four 750 W servo motor drives. - BOX version is required for AMPs and SDMs	\$ 900	\$ 500
AMP-43520 (-D3520)	Two 600 W servo motor drives with sinusoidal commutation	\$ 650	\$ 375
AMP-43540 (-D3540)	Four 600 W servo motor drives with sinusoidal commutation	\$1000	\$ 600
AMP-43640 (-D3640)	Four 20 W servo motor drives with sinusoidal commutation	\$ 600	\$ 350
SR-49000 (-SR90)	Shunt regulator (90V). Add to above	\$ 50	\$ 35
SDM-44020 (-D4020)	Two 1.4 A stepper motor drives- Full, Half, 1/4, 1/16. - BOX required	\$ 125	\$ 105
SDM-44040 (-D4040)	Four 1.4 A stepper motor drives- Full, Half, $1 / 4,1 / 16$. -BOX required	\$ 175	\$ 155
SDM-44140 (-D4140)	Four microstep drives.-BOX version is required for AMPs and SDMs	\$ 600	\$ 400
PS-2.50-24	$24 \mathrm{~V}, 60$-watt power supply	\$ 85	\$ 60
PSR-12-24	Power supply, $12 \mathrm{~A}, 24 \mathrm{VDC}$. Includes shunt regulator	\$ 250	\$ 175
PSR-6-48	Power supply, 6 A, 48 VDC. Includes shunt regulator	\$ 250	\$ 175
ICS-48115-F	15-pin D LD female to screw terminals-for analog inputs	\$ 50	\$ 35
ICS-48044-M	44-pin D HD male to screw terminals-for general I/0	\$ 75	\$ 50
ICS-48026-M	26-pin D HD male to screw terminals-for axis connectors	\$ 75	\$ 50
GalilTools-Lite	Editor, Terminal, Watch Tools. Includes communication library	Free download	
GalilTools	Above with Scope and Tuner	\$ 195	

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.

[^0]: *Reduced feature set for -FAST.

[^1]: *Current Loop bandwidth is system dependent. Contact Galii for unlisted upgrade options for all above drives.

[^2]: *Current Loop bandwidth is system dependent. Contact Galii for unlisted upgrade options for all above drives.

